Lesson 6. Sets, Summations, For Statements

1 Sets

• A set is a collections of elements/objects, e.g.

$$S = \{1, 2, 3, 4, 5\}$$
 Fruits = {Apple, Orange, Pear} (1)

• "in" symbol:

$$i \in N \iff$$
 "element *i* is in the set *N*"

• For example:

2 Summations

• Summation symbol over sets:

$$\sum_{i \in N} \quad \Leftrightarrow \quad \text{``sum over all elements of } N\text{''}$$

• For example:

$$\sum_{i \in S} i = 1 + 2 + 3 + 4 + 5$$

$$\sum_{j \in Fruits} Juice_j = Juice_{Apple} + Juice_{Orange} + Juice_{Pear}$$

• Common shorthand: if $N = \{1, 2, ..., n\}$, then

$$\sum_{i \in N} \text{ is the same as } \sum_{i \in \{1, 2, \dots, n\}} \text{ as well as } \sum_{i=1}^{n}$$

Example 1. Let the sets *S* and Fruits be defined as above in (1). Write each of the following as compactly as possible using summation notation:

a.
$$x_{\text{Apple}} + x_{\text{Orange}} + x_{\text{Pear}}$$

b. $1y_1 + 2y_2 + 3y_3 + 4y_4 + 5y_5$

a.
$$\sum_{j \in Fruits} \chi_j$$

b. $\sum_{i \in S} i y_i$
 $\sum_{k \in Fruits} \chi_k$

3 For statements

• "for" statements over sets:

for $i \in N \iff$ "repeat for each element of N"

• For example: Fruits = { Apple, orange, Pear}

$$c_j x_1 + d_j x_2 \le b_j$$
 for $j \in \text{Fruits} \iff$

Capple
$$x_1 + dapple x_2 \le bapple$$

Corange $x_1 + dorange x_2 \le borange$
Crear $x_1 + dpear x_2 \le bpear$

• Common shorthand: if $N = \{1, 2, ..., n\}$, then

"for
$$i \in N$$
" is the same as "for $i \in \{1, 2, ..., n\}$ " as well as "for $i = 1, 2, ..., n$ "

• Sometimes we say "for all $i \in N$ " instead of "for $i \in N$ " also sometimes " $\forall i \in N$ "

4 Multiple indices

- Sometimes it may be useful to use decision variables with multiple indices
- Example:
 - Set of hat types: $H = \{A, B, C\}$
 - Set of factories: $F = \{1, 2\}$
 - Each hat type can be be produced at each factory
 - o Define decision variables:

$$x_{i,j}$$
 = number of type i hats produced at factory j for $i \in H$ and $j \in F$ (2)

• What decision variables have we just defined? How many are there?

3 x 2 = 6 decision variables:
$$\chi_{A,1}$$
 $\chi_{A,2}$ $\chi_{B,1}$ $\chi_{B,2}$ $\chi_{C,1}$ $\chi_{C,2}$

Example 2. Using the decision variables defined in (2), write expressions for

- a. Total number of type *C* hats produced
- b. Total number of hats produced at facility 2

Use summation notation if possible.

a.
$$\chi_{c,i} + \chi_{c,2}$$

$$= \sum_{j=1}^{2} \chi_{c,j} = \sum_{j \in F} \chi_{c,j}$$
b. $\chi_{A,2} + \chi_{B,2} + \chi_{c,2}$

$$= \sum_{i \in H} \chi_{i,2}$$

Suppose

$$c_{i,j}$$
 = cost of producing one type i hat at factory j for $i \in H$ and $j \in F$

• If we produce $x_{i,j}$ hats of type i at factory j (for $i \in H$ and $j \in F$), then the total cost is

$$C_{A,i} x_{A,i} + C_{A,2} x_{A,2} + C_{B,i} x_{B,i} + C_{B,2} x_{B,2} + C_{C,i} x_{C,i} + C_{C,2} x_{C,2}$$

$$= \sum_{j \in F} C_{A,j} x_{A,j} + \sum_{j \in F} C_{B,j} x_{B,j} + \sum_{j \in F} C_{C,j} x_{C,j}$$

$$= \sum_{i \in H} \sum_{j \in F} C_{i,j} x_{i,j}$$

$$can also be written as \sum_{i \in H, j \in F} c_{B,j} x_{B,i} + C_{B,i} x_{B,i} + C_{C,i} x_{C,i}$$

Example 3. Let $M = \{1, 2, 3\}$ and $N = \{1, 2, 3, 4\}$. Write the following as compactly as possible using summation notation and "for" statements.

Let
$$y_1$$
 = amount of product 1 produced
 y_2 = amount of product 2 produced
 y_3 = amount of product 3 produced
 y_4 = amount of product 4 produced

$$\begin{array}{c} a_{1,1}y_1 + a_{1,2}y_2 + a_{1,3}y_3 + a_{1,4}y_4 = b_1 \\ a_{2,1}y_1 + a_{2,2}y_2 + a_{2,3}y_3 + a_{2,4}y_4 = b_2 \\ a_{3,1}y_1 + a_{3,2}y_2 + a_{3,3}y_3 + a_{3,4}y_4 = b_3 \end{array}$$

(2) (=)
$$a_{j,1}y_1 + a_{j,2}y_2 + a_{j,3}y_3 + a_{j,4}y_4 = b_j$$
 for $j \in M$
(=) $\sum_{i \in N} a_{j,i}y_i = b_j$ for $j \in M$